HYPERSOMNIA

Practice Parameters for the Treatment of Narcolepsy and other Hypersomnias of Central Origin

An American Academy of Sleep Medicine Report

Timothy I. Morgenthaler, MD; Vишesh K. Kapur, MD, MPH; Terry M. Brown, DO; Todd J. Swick, MD; Cathy Alessi, MD; R. Nisha Aurora, MD; Brian Boehlecke, MD; Andrew L. Chesson Jr.; MD; Leah Friedman, MA, PhD; Rama Maganti, MD; Judith Owens, MD; Jeffrey Pancer, DDS; Rochelle Zak, MD; Standards of Practice Committee of the AASM

These practice parameters pertain to the treatment of hypersomnias of central origin. They serve as both an update of previous practice parameters for the therapy of narcolepsy and as the first practice parameters to address treatment of other hypersomnias of central origin. They are based on evidence analyzed in the accompanying review paper. The specific disorders addressed by these parameters are narcolepsy (with cataplexy, without cataplexy, due to medical condition and unspecified), idiopathic hypersomnia (with long sleep time and without long sleep time), recurrent hypersomnia and hypersomnia due to medical condition. Successful treatment of hypersomnia of central origin requires an accurate diagnosis, individual tailoring of therapy to produce the fullest possible return of normal function, and regular follow-up to monitor response to treatment. Modafinil, sodium oxybate, amphetamine, methamphetamine, dextroamphetamine, methylphenidate, and selegiline are effective treatments for excessive sleepiness associated with narcolepsy, while tricyclic antidepressants and fluoxetine are effective treatments for cataplexy, sleep paralysis, and hypnagogic hallucinations; but the quality of published clinical evidence supporting them varies. Scheduled naps can be beneficial to combat sleepiness in narcolepsy patients. Based on available evidence, modafinil is an effective therapy for sleepiness due to idiopathic hypersomnia, Parkinson’s disease, myotonic dystrophy, and multiple sclerosis. Based on evidence and/or long history of use in the therapy of narcolepsy committee consensus was that modafinil, amphetamine, methamphetamine, dextroamphetamine, and methylphenidate are reasonable options for the therapy of hypersomnias of central origin.

Keywords: Narcolepsy, idiopathic hypersomnia, recurrent hypersomnia, Parkinson’s disease, myotonic dystrophy, multiple sclerosis, modafinil, sodium oxybate, amphetamine, methamphetamine, dextroamphetamine, methylphenidate, selegiline, tricyclic antidepressants, fluoxetine

Citation: Morgenthaler TI; Kapur VK; Brown TM; Swick TJ; Alessi C; Aurora RN; Boehlecke B; Chesson AL; Friedman L; Maganti R; Owens J; Pancer J; Zak R; Standards of Practice Committee of the AASM. Practice parameters for the treatment of narcolepsy and other hypersomnias of central origin. SLEEP 2007;30(12):1705-1711.

INTRODUCTION

EXCESSIVE DAYTIME SLEEPINESS HAS A SIGNIFICANT DETRIMENTAL IMPACT ON PSYCHOLOGICAL, SOCIAL AND VOCATIONAL FUNCTION AND PERSONAL SAFETY, thus adversely affecting quality of life. Sleepiness is an important public health issue among individuals who work in fields where the lack of attention can result in injury to self or others such as transportation and healthcare. Hypersomnia of central origin is a category of disorders in which daytime sleepiness is the primary complaint, but the cause of this symptom is not due to “disturbed nocturnal sleep or misaligned circadian rhythms.”

Narcolepsy, a disorder characterized by excessive daytime sleepiness and intermittent manifestations of REM sleep during wakefulness, is the best characterized and studied central hypersomnia. The use of stimulants for treatment of narcolepsy was the subject of an American Academy of Sleep Medicine (AASM) review paper in 1994, and formed the basis for practice parameters published by the Standards of Practice Committee (SPC) of the AASM on therapy of narcolepsy with stimulants. In 2000, the SPC published a combined review and updated practice parameters on treatment of narcolepsy that included therapies other than stimulants.

Since the publication of the 2000 paper, there have been significant advances concerning the treatment of hypersomnia to justify a practice parameters update. In addition, since the publication of the previous practice parameters, the AASM published a revised coding manual, the International Classification of Sleep Disorders, Second Edition (ICSD-2). The ISCD-2 includes 12 disorders under the category of hypersomnia of central origin. This updated parameter paper and the accompanying review expanded the scope of the review and practice parameters to a subset of disorders in which the primary pathophysiology of hypersomnia is not related to sleep restriction, medication use or psychiatric disorder. For these disorders, the use of alerting medications often represent the primary mode of therapy. The specific disorders included in these practice parameters are narcolepsy (with cataplexy, without cataplexy, due to medical condition and unspecified) idiopathic hypersomnia (with long sleep time and without long sleep time), recurrent hypersomnia, and hypersomnia due to a medical condition. For the remainder of this manuscript, use of...
METHODS

The Standards of Practice Committee of the AASM developed the clinical questions and scope of practice to be addressed in the present practice parameters. The AASM appointed a Task Force of content experts in 2005 to perform a comprehensive review of the medical literature regarding treatment of hypersomnias of central origin, and to grade the strength of evidence for each citation. The literature search was performed using Medline, and details regarding search terms, exclusions, and methods for screening by Task Force members, and questions addressed are provided in the accompanying review paper. The grading of evidence was performed by the Task Force in accordance with the scheme shown in Table 1. Three members of the Standards of Practice Committee (VK, TB, and TS) served as liaisons to facilitate communication between the Standards of Practice Committee and the Task Force. The Standards of Practice Committee used the evidence review of the Task Force, the prior practice parameters on narcolepsy, and the reviews upon which they were informed to develop these updated practice parameters, and rated the levels (strength) of recommendations using the AASM codification shown in Table 2. This practice parameter paper is referenced, where appropriate, using square-bracketed numbers to the relevant sections and tables in the accompanying review paper, or with additional references at the end of this paper. When scientific data were absent, insufficient or inconclusive, committee consensus was used to develop recommendations at an “Option” level (Table 2).

The Board of Directors of the AASM approved these recommendations. All members of the AASM Standards of Practice Committee and Board of Directors completed detailed conflict of interest statements and were found to have no conflicts of interest with regard to this subject. These practice parameters define principles of practice that should meet the needs of most patients in most situations. These guidelines should not, however, be considered inclusive of all proper methods of care or exclusive of other methods of care reasonably directed to obtaining the same results. The ultimate judgment regarding propriety of any specific care must be made by the physician, in light of the individual circumstances presented by the patient, available diagnostic tools, accessible treatment options, and resources. The AASM expects these guidelines to have an impact on professional behavior, patient outcomes, and, possibly, health care costs. These practice parameters reflect the state of knowledge at the time of publication and will be reviewed, updated, and revised as new information becomes available.
RECOMMENDATIONS

Recommendations concerning narcolepsy which are similar to, or are an expansion of previous ones, and new recommendations are noted as such in the text. The recommendations concerning other hypersomnias of central origin represent the first recommendations on treatment of these disorders. Recommendations regarding use of medications apply only to adults except when specified.

1. An accurate diagnosis of a specific hypersomnia disorder of central origin should be established. The evaluation should include a thorough evaluation of other possible contributing causes of excessive daytime sleepiness. (Standard).

Prior to committing to long-term therapy of hypersomnia, an accurate diagnosis is important in order to choose an appropriate therapy. The ICSD-2 specifies necessary diagnostic tests and criteria for each disorder of hypersomnia of central origin. Many other conditions produce such sleepiness and can mimic or coexist with a hypersomnia of central origin. These include sleep disordered breathing syndromes, periodic limb movements, insufficient sleep, psychiatric disorders, medications, and circadian rhythm disorders. All need to be considered in the differential diagnosis as possibly causing or contributing to the excessive sleepiness in a patient with a hypersomnia of central origin. Management of these primary or concomitant disorders will require specific therapeutic interventions apart from the use of CNS alerting agents or CNS neuromodulator agents. We acknowledge that this recommendation is based on committee consensus and is only slightly revised from a previous recommendation which was restricted to narcolepsy. Typically consensus only merits an “Option” level of recommendation. Although there are no articles addressing the need for an accurate diagnosis, all subsequent evidence evaluating efficacy of treatments assumes an accurate diagnosis has been established. Therefore, the SPC left this recommendation at a “Standard” level.

2. Treatment objectives should include control of sleepiness and other sleep related symptoms when present. (Standard)

It has been previously recommended that a major objective of treatment of narcolepsy should be to alleviate daytime sleepiness. The goal should be to produce the fullest possible return of normal function for patients at work, at school, at home, and socially. This recommendation was revised by committee consensus to apply to the disorders of hypersomnia of central origin. A recommendation to control nocturnal symptoms of disrupted sleep is added to the previous recommendation to control cataplexy, hypnagogic hallucinations, and sleep paralysis, when present and troublesome in patients with narcolepsy. As previously recommended for narcolepsy, a healthcare provider should consider the benefit to risk ratio of medication for an individual patient, the cost of medication, convenience of administration, and the cost of ongoing care including possible laboratory tests when selecting a medication for treatment of any hypersomnia of central origin.

3. The following are treatment options for narcolepsy.

Most of the agents used to treat excessive sleepiness have little effect on cataplexy or other REM sleep associated symptoms. Conversely, most antidepressants and anticitaplectics have little effect on alertness. However, some compounds act on both symptoms. We have indicated which symptoms are addressed by the various agents below. Compounds should be selected depending on the diagnosis and the targeted symptoms. Co-administration of two or more classes of compounds may be needed in some patients to adequately address their symptoms.

a. Modafinil is effective for treatment of daytime sleepiness due to narcolepsy [4.1.1.2] (Standard).

This recommendation is unchanged from the previous recommendation. Fourteen additional studies including four level 1 studies and two level 2 studies support this recommendation. The approved recommended dose of modafinil is 200 mg given once daily, but higher doses and split dose regimens have been investigated. Three level 1 studies indicated that the use of a split dose strategy provides better control of daytime sleepiness than a single daily dose. One of the studies demonstrated that adding a dose of modafinil 200 mg at 12:00 after a 400 mg dose at 07:00 improved late day maintenance of wakefulness test (MWT) scores relative to a single 400 mg morning dose alone. A second study demonstrated that a split dosing strategy either with 200 mg of modafinil at 07:00 and 12:00 or 400 mg in the morning and 200 mg at noon was significantly superior to a single morning 200 mg dose at 07:00. Statistical comparisons to a group that received a 400 mg dose in the morning alone were not provided, but split dosing strategies trended towards improved control of sleepiness in the evening. A third study assessed subjects with reported persistent late afternoon or evening sleepiness despite a positive response to modafinil therapy. Subjects who received 400 mg per day in a divided dosage experienced improvement in subjective and objective measures of sleepiness in the afternoon or evening compared with those on a single 200 mg or 400 mg dosage. A level 1 study by Black et al. compared combinations of active and placebo preparations of modafinil and sodium oxybate. Subjects who received active modafinil showed improvement in objective and subjective sleepiness compared to placebo modafinil. Those subjects receiving both active modafinil and active sodium oxybate showed the most improvement suggesting an additive effect of the combination. One level 4 open label study showed modafinil was effective in improving sleepiness and was generally well tolerated in 13 children (mean age 11 years) with narcolepsy or idiopathic hypersomnia.

One additional level 1 study of 196 subjects involved assessment of armodafinil (the longer half-life enantiomer of modafinil) for treatment of excessive sleepiness in patients with narcolepsy. Subjects receiving armodafinil experienced significant improvement in sleepiness as measured by the MWT mean sleep latency, and in the Clinical Global Impression of Change.

b. Sodium oxybate is effective for treatment of cataplexy, daytime sleepiness, and disrupted sleep due to narcolepsy [4.2.1, 4.1.1.3, 4.3.1] (Standard). Sodium oxybate may be effective for treatment of hypnagogic hallucinations and sleep paralysis [4.4.1] (Option).

This is a new recommendation, and is based on three level 1 and two level 4 studies. Three level 1 studies support the efficacy of sodium oxybate in treating cataplexy. One of these studies also supported its efficacy in treating daytime sleepiness and dis-
rupted sleep but found no significant improvement in hypnagogic hallucinations or sleep paralysis. Two additional level 1 studies supported its efficacy in treating daytime sleepiness. There was one level 4 study that supported its efficacy in improving daytime sleepiness, nocturnal awakenings, sleep paralysis, and hypnagogic hallucinations. Studies that supported efficacy in improving daytime sleepiness showed greater treatment effects and statistically significant effects most consistently at the highest dose (9 g/night). In addition, there was one level 4 study that supported its efficacy for cataplexy and daytime sleepiness.

c. Amphetamine, methamphetamine, dextroamphetamine, and methylphenidate are effective for the treatment of daytime sleepiness due to narcolepsy [4.1.1.1] (Guideline).

This recommendation is unchanged from the previous recommendation. These medications have a long history of effective use in clinical practice but have limited information available on benefit-to-risk ratio. This lack of information may reflect the limited sources of research funding for medications available in generic form rather than clinical utility of these medications.

d. Selegiline may be an effective treatment for cataplexy and daytime sleepiness. [4.1.1.4] (Option)

This recommendation was downgraded from the previous recommendation based on committee consensus. The current literature review did not identify additional studies that met inclusion criteria. The use of selegiline is limited by potential drug interactions and diet-induced interactions. Because of limited clinical experience with the use of this medication for narcolepsy and potential drug and diet interactions, the committee had significant reservations about this agent being used as the preferred initial choice for treatment of sleepiness in narcolepsy.

e. Ritanserin may be effective treatment of daytime sleepiness due to narcolepsy [4.1.1.6] (Option).

This is a new recommendation based on two level 2 studies of ritanserin, a 5-HT2 antagonist. One study demonstrated improved subjective sleepiness, but not in mean sleep latency on MSLT in narcolepsy patients (N=28) when ritanserin 5 mg/day was added to the medication regimen. The other study, which compared 5 mg, 10 mg, or placebo in 134 subjects with narcolepsy, did not demonstrate significant improvement in sleepiness, but showed improvement in subjective sleep quality. Ritanserin is not available for use in the United States.

f. Scheduled naps can be beneficial to combat sleepiness but seldom suffice as primary therapy for narcolepsy [4.1.2]. (Guideline).

This recommendation is unchanged from the previous recommendation. The current search identified an additional level 2 study which supports the use of scheduled naps in narcolepsy patients who remain sleepy despite the use of medications. The combination of regular bedtimes and two 15-minute regularly scheduled naps reduced unscheduled daytime sleep episodes and sleepiness when compared to stimulant therapy alone.

g. Pemoline has rare but potentially lethal liver toxicity, is no longer available in the United States, and is no longer recommended for the treatment of narcolepsy [4.1.1.7] (Option).

This is a new recommendation based on committee consensus.

h. Tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), venlafaxine, and reboxetine may be effective treatment for cataplexy [4.2.2] (Guideline).

This recommendation is changed from the previous recommendation addressing treatment of cataplexy, hypnagogic hallucinations, and sleep paralysis. The medications recommended for treatment of cataplexy have been expanded to include SSRIs, venlafaxine, and reboxetine. A separate recommendation regarding treatment of hypnagogic hallucinations and sleep paralysis is addressed below as a separate parameter. There was limited evidence regarding treatment of cataplexy in the prior practice guidelines. In the updated review, only one level 4 study involving treatment of cataplexy with a medication other than sodium oxybate was identified. Reboxetine, a selective norepinephrine reuptake inhibitor, decreased cataplexy in 12 subjects with narcolepsy with cataplexy. Reboxetine is not available for use in the United States. The previous recommendation for the SSRI fluoxetine was based on one level 2 and one level 5 study supporting its efficacy for treatment of cataplexy. Additional studies of other SSRIs in the treatment of cataplexy and related symptoms did not meet our inclusion criteria as most were case reports and small open label studies. However, the clinical experience of sleep specialists and committee consensus, as well as the more limited open label studies with small numbers of subjects, reflect that additional SSRIs are useful for treating cataplexy in patients with narcolepsy. The antidepressant venlafaxine, which increases serotonin and norepinephrine uptake, may also reduce cataplexy, based on clinical experience, committee consensus, and a case study of 4 patients that did not meet inclusion criteria for our review.

i. Tricyclic antidepressants, selective serotonin reuptake inhibitors (SSRIs), and venlafaxine may be effective treatment for the treatment of sleep paralysis and hypnagogic hallucinations [4.4.2] (Option).

By consensus, this recommendation is revised from the prior recommendation. The recommendation level is reduced from guideline to option. Additional antidepressant medications are also recommended. No new pertinent studies have been identified in the current review. Recommendation level was downgraded to reflect that this recommendation is based on anecdotal experience of committee members. These treatments may be considered for this indication when the treating physician and patient believe that the benefits of treatment outweigh the risks. In addition, based on clinical experience and committee consensus, the recommendations are extended to include additional antidepressant agents (SSRIs and venlafaxine).

4. Modafinil may be effective for treatment of daytime sleepiness due to idiopathic hypersomnolence [4.8] (Option).

One level 4 study that included 24 patients with narcolepsy and 18 with idiopathic hypersomnolence examined the efficacy...
of modafinil in adults with idiopathic hypersomnia.28 There were improvements in the mean number of drowsy episodes and sleep attacks as recorded in sleep diaries for both patient groups on this medication. This is a new recommendation.

5. The following medications may be effective treatments for specific types of hypersomnia due to a medical condition [4.9].

a. Modafinil may be effective for treatment of daytime sleepiness due to Parkinson’s disease (Option).

This conclusion is based on: one level 1 study which showed improvement in the Epworth Sleepiness Scale (ESS) but no change in MWT39; one level 2 study which showed no improvement in subjective or objective measures of excessive daytime sleepiness10; one level 4 study which showed improvement in ESS31; and Committee consensus. However the benefit to risk ratio is not well documented because the published clinical trials include only small numbers of patients. This is a new recommendation.

b. Modafinil may be effective for treatment of daytime sleepiness due to myotonic dystrophy (Option).

This conclusion is based on one level 1 study which showed improvement in MWT but no significant change in ESS, and on committee consensus. The benefit to risk ratio is not well documented because the published clinical trial included only small numbers (n=20) of patients.32 This is a new recommendation.

c. Methylphenidate may be effective for treatment of daytime sleepiness due to myotonic dystrophy (Option)

This conclusion is based on one small (N=11) level 4 study of methylphenidate for treatment of sleepiness associated with myotonic dystrophy that demonstrated improvement in subjective sleepiness in 7 of 11 subjects at doses up to 40 mg/day, and committee consensus.

d. Modafinil may be effective for treatment of daytime sleepiness due to multiple sclerosis (Guideline).

This conclusion is based on one level 2 study (N=72) and one level 4 study (N=50) which showed improvement on the ESS.33,34 This is a new recommendation.

6. Lithium carbonate may be effective for treatment of recurrent hypersomnia and behavioral symptoms due to Kleine-Levin syndrome. [4.6] (Option)

This recommendation is based on one small case series (N=5) that indicated that the duration of hypersomnia episodes was shorter and there were no behavioral symptoms during episodes that were treated with lithium carbonate,35 and committee consensus.

7. The following medications may be effective for treatment of daytime sleepiness in idiopathic hypersomnia (with and without long sleep time), recurrent hypersomnia, and hypersomnia due to a medical condition: amphetamine, methamphetamine, dextroamphetamine, methylphenidate, and modafinil [4.7, 4.8, 4.9] (Option)

The literature supporting the efficacy of these medications for other specific disorders such as narcolepsy have been reviewed. Where published evidence meeting search criteria is available for the use of any of these medications in the conditions listed, this has been provided in sections 4 and 5. This recommendation applies to those medications and conditions combinations for which published literature meeting search criteria is not available. Although there is no reason to suspect they will not improve alertness, individualized therapy and close follow-up to ensure efficacy and monitor for side effects is needed. The recommendations for these disorders are based on committee consensus.

8. The following are treatment recommendations previously applied to narcolepsy only. Their application is now extended to the hypersomnias of central origin covered by this practice parameter paper by committee consensus.

a. Combinations of long- and short-acting forms of stimulants may be indicated and effective for some patients (Option).

Some stimulants have a short (3 to 4 hours) effective period (e.g., methylphenidate). Others have longer duration of activity and longer onset of action (e.g., modafinil, sustained-release amphetamine, sustained-release methylphenidate). By combining stimulants with different activity characteristics, it may be possible to achieve alertness quickly and for longer periods of time and succeed in avoiding insomnia as an unwanted side effect.4

b. Treatment of hypersomnias of central origin with methylphenidate or modafinil in children between the ages of 6 and 15 appears to be relatively safe. [4.1.1.2, 4.8, 5.1.1] (Option)

There is considerable experience with the use of methylphenidate for treatment of attention deficit disorder.4 There is one level 4 study of modafinil in children with narcolepsy or idiopathic hypersomnolence that indicated it was safe and well tolerated in children who did not have other preexisting neurologic or psychiatric conditions.10

c. Regular follow-up of patients with hypersomnia of central origin is necessary to monitor response to treatment, to respond to potential side effects of medications, and to enhance the patient’s adaptation to the disorder [4.10] (Standard).

i. A patient previously stabilized on stimulant medication should be seen regularly by a health care provider at least once per year, and preferably once every 6 months, to assess the development of medication side effects, including sleep disturbances, mood changes, and cardiovascular or metabolic abnormalities.

ii. Follow-up is necessary to determine adherence and response to treatment; to monitor for the safety of medications in individual patients; and to assist the patient with occupational and social problems.

iii. Patients with severe sleepiness should be advised to avoid potentially dangerous activities at home and at work, and should not operate a motor vehicle until sleepiness is appropriately controlled by stimulant medications.
iv. Of the stimulants used to treat hypersomnia of central origin, amphetamines, especially at high doses, are the most likely to result in the development of tolerance.

v. Patients who fail to respond to adequate doses of stimulant medication should be carefully assessed for other sleep disorders that may contribute to excessive sleepiness such as insufficient sleep, inadequate sleep hygiene, circadian rhythm disorders, obstructive sleep apnea syndrome, or periodic limb movement disorder.

vi. For side effects, dosage ranges, use in pregnancy and by nursing mothers, and contraindications, see Tables 6 and 7 in the accompanying review paper.1

vii. Health care providers should assist the patient with occupational and social accommodation for disabilities due to hypersomnia of central origin.

viii. Polysomnographic re-evaluation of patients should be considered if symptoms of sleepiness increase significantly or if specific symptoms develop that suggest new or increased sleep abnormalities that might occur in disorders such as sleep apnea or periodic limb movement disorder.

Areas for Future Research

The preparation of this practice parameter and the accompanying review highlighted the need for additional research regarding treatment of hypersomnia of central origin.

1. Comparisons of traditional stimulants to newer somnolytic agents for hypersomnia due to narcolepsy.

Several large randomized, placebo-controlled studies indicate that modafinil and sodium oxybate are effective for treatment of hypersomnia associated with narcolepsy. The traditional stimulants (amphetamine, methamphetamine, dextroamphetamine, and methylphenidate) which are available in generic form and are less expensive, have a long history of use in clinical practice, but have limited high-level evidence from published studies. There is a need for randomized trials that compare the newer agents to the traditional stimulants to establish relative efficacy and safety of these agents to guide the clinician in choosing between them for individual patients.

2. Additional assessment of antidepressants and comparison to sodium oxybate for treatment of cataplexy.

The recommendation for use of antidepressants for cataplexy is based largely on clinical experience and lower evidence level clinical trials. Randomized controlled trials of these agents, particularly with comparison to sodium oxybate, a more expensive medication that has high level evidence of efficacy, are needed to assist the clinician in medication selection.

3. New therapies for treatment of hypersomnia due to narcolepsy.

As indicated by the accompanying review, traditional stimulants, modafinil and sodium oxybate provide, at best, only moderate improvement in sleepiness in patients with narcolepsy. Future investigations should be directed toward development of more effective and better tolerated therapies, and primary prevention.

4. Need for studies on treatment of hypersomnias of central origin other than narcolepsy.

The review identifies very few studies that address the treatment of sleepiness in specific hypersomnia disorders other than narcolepsy. There is a need for studies, particularly testing the use of traditional stimulants in these disorders.

5. Need for peer-reviewed literature regarding special populations including children, elderly patients, and pregnant and nursing women.

The review identified very few studies that involve special populations with hypersomnia such as children, older adults, or pregnant or nursing women. There is a need for studies that address safety issues specific to these populations.

REFERENCES

Evidence Table—Practice Parameters for the Treatment of Narcolepsy and other Hypersomnias of Central Origin An American Academy of Sleep Medicine Report

<table>
<thead>
<tr>
<th>Author (yr); Oxford Grade; Patient Group.</th>
<th>Intervention/ Comparison Intervention</th>
<th>Outcomes Measures</th>
<th>Study Description/ Study type/Blinding Method</th>
<th>Recruitment Source/ Funding Source/ Recruitment</th>
<th># patients enrolled/ completed/ Patients' Age + SD [range]/ Gender</th>
<th># controls enrolled/ completed/ Controls' Age + SD [range]/ Gender</th>
<th>Dose/Dosing Strategy</th>
<th>Primary Study Outcomes</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bastuji (1988); 4; N, IH</td>
<td>Modafinil</td>
<td>EDS (subj)</td>
<td>Pre and 1-2 months post treatment comparison of number of drowsiness and sleepiness attacks per day reported in a diary using Modafinil (cohort study)/no blinding</td>
<td>NR/NR/Expert- Assigned or Selected Grps</td>
<td>24/22 with NR 40 ±17 yrs/ 70.8% 17/14 with IH, 43 ±15 yrs/52.9%</td>
<td>NA</td>
<td>200 mg-500 mg/ day in divided doses/BID (in am and at noon)</td>
<td>There were significant decreases in the mean number of drowsy episodes and number of sleep attacks reported by both pr. groups; no effect on C.</td>
<td>Modafinil was effective for reducing EDS in pts. with N or IH.</td>
</tr>
<tr>
<td>Becker, P. M. et al. (2004); 4, N</td>
<td>Modafinil</td>
<td>Mood/Quality of Life, safety/ AE</td>
<td>A 6-week open label multicenter trial to determine if Modafinil reduced fatigue, improved mood and health related quality of life compared to baseline/cohort study/ no blinding</td>
<td>Clinic population/ Pharmaceutical/ Expert- Assigned or Selected Grps</td>
<td>15/123/39 [18- 68]/46%</td>
<td>NA</td>
<td>200 or 400 mg, optimal dose determined at end of second week and participant remained on that dose for duration of the trial/4 days, 1 hour before or after first meal</td>
<td>Modafinil significantly improved health related quality of life component summary scores on the SF-36, and significantly improved, scores in all domains of the POMS.</td>
<td>Treatment with Modafinil significantly improved health related quality of life as assessed by SF-36 and all POMS-associated factors, in comparison to abstinence from treatment.</td>
</tr>
<tr>
<td>Black 2006; 1; N.</td>
<td>Modafinil, sodium oxybate/Placebo</td>
<td>Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Mood/Quality of Life</td>
<td>Characterization of the efficacy of sodium oxybate as a single agent, or in combination with modafinil, for the treatment of EDS in narcolepsy.</td>
<td>44 sites in the United States, Canada, the Czech Republic, France, Germany, the Netherlands, Switzerland, and the United Kingdom/ Pharmaceutical/ Expert- Assigned or Selected Grps</td>
<td>278/222/Sodium oxybate group: 35.1 +/- 12.9/52%, modafinil group: 38.9 +/- 15.6/50.8%, sodium oxybate/ modafinil group: 38.9 +/- 15/46.3%</td>
<td>Crossover study/41.0 +/- 13.4/43.6%</td>
<td>Usual modafinil dose between 200-600 mg/day. Sodium oxybate 6 g nightly for the initial 4-weeks of the double-blind study then increased to 9g nightly for the duration of the study. Following a 2-week single-blind baseline period during which patients took their customary doses of modafinil (200 to 600 mg/day) and nightly placebo sodium oxybate solution (equally divided doses at bedtime and then 2.5-4 hours later), patients were randomized in a double-blind fashion to 1 of 4 groups: Group 1: placebo sodium oxybate + placebo modafinil, Group 2: sodium oxybate + placebo modafinil, Group 3: placebo sodium oxybate + modafinil, Group 4: sodium oxybate + modafinil.</td>
<td>EDS as defined by the MWT which was performed following nocturnal PSG at visits 2, 3, 4, and 5 according to validated standards (Four 20 min tests 2 hours apart).</td>
<td>Sodium oxybate and modafinil are both effective for treating EDS in narcolepsy, producing additive effects when used together. Sodium oxybate is beneficial as both mono-therapy and adjunctive therapy for the treatment of EDS in narcolepsy.</td>
</tr>
<tr>
<td>Duiviviers, Y. et al. (2002); 4, N</td>
<td>Modafinil</td>
<td>EDS (subj)</td>
<td>GCIS</td>
<td>To determine if the COMT genotype affects the response to treatment with Modafinil and if the differences in COMT genotype distribution between men and women is associated with response to Modafinil/cohort study/single blind</td>
<td>NR/private foundation, Univ Hospital of Geneva/ Expert- Assigned or Selected Grps</td>
<td>84/84/ 48.21 +19.25 [14- 80]/61.9%</td>
<td>NA</td>
<td>W 262.5 ± 16.65 mg M 343.34 ± 16.17/mg</td>
<td>52/84 classified as good responders; 25/84 classified as moderate responders; 7/84 classified as non responders to Modafinil/An equal number of men and women were categorized as good responders; optimal daily dosage of Modafinil was significantly lower in women than men (262 mg compared to 343 mg); optimal daily dose somewhat affected by COMT genotype.</td>
</tr>
<tr>
<td>Author (yr);</td>
<td>Intervention/ Comparison Intervention</td>
<td>Outcomes Measures</td>
<td>Study Description/ Study type/Blinding/ Method</td>
<td>Recruitment Source/ Funding Source/ Recruitment</td>
<td># patients enrolled/ completed/Controls’ Age + SD [range]/ %male</td>
<td>Dose/Dosing Strategy</td>
<td>Primary Study Outcomes</td>
<td>Conclusions</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>---------------------------------------</td>
<td>-------------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---------------------</td>
<td>----------------------</td>
<td>---------------------</td>
<td></td>
</tr>
<tr>
<td>Group (2005); 1; N, C.</td>
<td>Sodium oxybate/ Placebo</td>
<td>Improve Cataplexy</td>
<td>8 week DB PC trial to evaluate sodium oxybate in the treatment of cataplexy/ Randomized Control Trial/Double-Blind Testing</td>
<td>42 sleep clinics/ Pharmaceutical/ Expert-Assigned or Selected Grps</td>
<td>228/209:40.5 [16-75]/34.6%</td>
<td>NA</td>
<td>4.5 g, 6.0 g, 9.0 g (all in 2 divided doses) after washout from anticitaplectic medications/ All patients on active drug started with 4.5 g per night; one group continued this dose for duration of study; a second group increased to 6.0 g after a week and continued this dose for duration of study; a third group increased to 6.0 g after a week, then 7.5 g after a week, then 9.0 g and continued this dose for duration of study</td>
<td>Significant reduction in weekly cataplexy with nightly doses of 4.5, 6.0 and 9.0 g sodium oxybate for 8 weeks, with median decreases of 57.0, 65.0 and 87.7%, respectively; overall reduction of cataplexy greater at 8 weeks than at 4 weeks.</td>
<td>Sodium oxybate highly effective in treating cataplexy in a time and dose-dependent manner; weekly titration appears to be well-tolerated.</td>
</tr>
<tr>
<td>Group, 2005; 1; N</td>
<td>Sodium oxybate/ Placebo</td>
<td>Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Mood/Quality of Life, Safety/ Adverse Events</td>
<td>A multi-center randomized, double blind, placebo controlled study evaluating the effectiveness of sodium oxybate on sleepiness in narcolepsy pts with cataplexy over 8 weeks/Randomized Control Trial/Double-Blind Testing</td>
<td>Subset of narcolepsy subjects in a multi-center drug trial/ Expert-Assigned or Selected Grps/ Pharmaceutical</td>
<td>228/209 [400 pts originally entered a larger ongoing trial but only 228 entered the double blind phase] 40.5 (16-75) 34.6%</td>
<td>NA</td>
<td>4.5, 6 or 9g/Two equally divided doses taken immediately before bed and 2.5-4 hours later; all pts in treatment groups started at 4.5 but 2/3 were then titrated up to either their assigned group of 6g or 9g</td>
<td>ESS and CGI showed dose related significant improvement at all doses. MWT latencies showed significant increases only at 4.5 and 9 g dose (1.75 and 10 min respectively). Inadvertent sleep attacks showed dose related decrease but only significant for 6 and 9g</td>
<td>Sodium oxybate when taken with other traditional stimulants significantly decreases daytime sleepiness in a dose related manner as measured by ESS and number of sleep attacks. MWT scores are also significantly improved for the 4.5 and 9g dose with 9g showing a robust increase.</td>
</tr>
<tr>
<td>Guilleminault, C.et al (2000); 3; N with C.</td>
<td>Modafinil</td>
<td>EDS (subj)</td>
<td>Four groups of N pts. with EDS were switched to Modafinil from their current medication: 1) no medication regimen (naive); 2) only stimulant medications; 3) only anticitaplectic medications; 4) both stimulant and anticitaplectic medications/cohort study/no blinding</td>
<td>Three sleep clinics, two in Europe and one in the United States/NR/Expert-Assigned or Selected Grps</td>
<td>60/69; 31 from USA; 29 from Europe/ 41±16 [19-68] 55%</td>
<td>NA</td>
<td>100-600mg/after withdrawal, pts. were switched to 100 mg of Modafinil; dosage was increased by 100-mg every 3 days; most common dosage was 400-mg divided into two dosages given morning and noon</td>
<td>Naive pts. accepted Modafinil best; pts. withdrawn from amphetamine had the most problems and failure to withdraw; use of a progressive withdrawal protocol may reduce problems; Venlafaxine hydrochloride combined well with Modafinil to control cataplectic attacks.</td>
<td>Modafinil is an appropriate medication to counteract daytime sleepiness, but caution is warranted in switching from amphetamine to Modafinil in some pts., and presence of C may warrant both Modafinil in combination with anticitaplectic agent.</td>
</tr>
<tr>
<td>Author (yr); Oxford Grade; Patient Group.</td>
<td>Intervention/ Comparison Intervention</td>
<td>Outcomes Measures</td>
<td>Study Description/ Study type/Blinding/ Method</td>
<td>Recruitment Source/ Funding Source/ Recruitment</td>
<td># patients enrolled/ completed/ Patients Age + SD [range]/ %male</td>
<td># controls enrolled/ completed/ Controls Age + SD [range]/ %male</td>
<td>Dose/Dosing Strategy</td>
<td>Primary Study Outcomes</td>
<td>Conclusions</td>
</tr>
<tr>
<td>--</td>
<td>------------------------------------</td>
<td>-----------------</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>-------------------</td>
<td>----------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Harsh 2006; 1; N.</td>
<td>Armodafinil/Placebo</td>
<td>Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Safety/ Adverse Events</td>
<td>12 week DB RCT with placebo control to assess efficacy and safety of armodafinil in patients with narcolepsy</td>
<td>47 centers in 6 countries/ pharmaceutical industry/Expert- Assigned or Selected Gps</td>
<td>132/105 (65.39 for 150 mg group; 67.6 for 250 mg group)/40.4+12.5/44% for 150 mg dose group; 35.0±12.5/37% for 250 mg dose group</td>
<td>150 mg or 250 mg (Once daily for 12 weeks)</td>
<td>At final visit, mean MWT SL increased 1.3, 2.6 and 1.9 min from baseline in the 150 mg, 250 mg and armodafinil combined groups, respectively; proportion of patients with at least minimal improvement in CGI-C was significantly higher for 150 mg, 250 mg and armodafinil combined groups compared to placebo at all time points (p=0.0001); ESS, global fatigue rating per BFI, some measures of attention and memory per CDR improved with armodafinil compared to placebo; naps and unintentional sleep periods were reduced per diaries in armodafinil groups compared to placebo; no change in cataplexy with armodafinil; no adverse effects on PSG parameters with armodafinil.</td>
<td>In patients with narcolepsy, armodafinil at doses of 150 or 250 mg/day significantly improved wakefulness during the day, CGI-C and some measures of memory and attention compared to placebo.</td>
<td></td>
</tr>
<tr>
<td>Byveld et al. (2003); 4; N, IH.</td>
<td>Modafinil/placebo</td>
<td>Daytime Sleepiness (Objective), Safety/Adverse Events</td>
<td>This cross-over study was designed to test the efficacy of Modafinil compared to placebo for the treatment of increased daytime sleepiness in pts. with PD/cohort study/double blind</td>
<td>Clinic population/ Pharmaceutical/ Expert-Assigned or Selected Gps</td>
<td>15/12/65.0 ±7.6/75%</td>
<td>NA</td>
<td>100 mg the first week of treatment and 200 mg the second week/q am</td>
<td>Although there was significant improvement in subjective sleepiness (ESS scores) there was no improvement in objective measures of sleepiness (MWT).</td>
<td>Modafinil produces significant improvement in subjective alertness, but not objective alertness in patients with PD.</td>
</tr>
<tr>
<td>Ivanenko, A. et al. (2003); 4; N, IH.</td>
<td>Modafinil</td>
<td>EDS (subj), EDS (obj), safety/AE</td>
<td>The effects of Modafinil on daytime sleepiness in children with IH or N was assessed over 15.6 + 7.8 months/cohort study/no blinding</td>
<td>Clinic population/ NR/Expert-Assigned or Selected Gps</td>
<td>13 /7/ 11.0 ± 5.3 years, [2 -18]</td>
<td>46%</td>
<td>Mean dose = 346 ± 120 mg/ typically in the morning and at noon</td>
<td>Parents reported improvements in daytime sleep attacks, EDS, and daytime naps; Mood and academic performance also improved with Modafinil; average MSL on the MSLT increased with treatment (10.2 ± 4.8 min) as compared to baseline (6.6 ± 3.7); one child failed to improve with Modafinil and three showed partial improvement requiring an additional medication/ 12 children respondered.</td>
<td>Modafinil produced a modest but significant decrease in sleepiness in children and appears to be safe and well tolerated in this population.</td>
</tr>
<tr>
<td>Lammers (1991); 2; N.</td>
<td>Ritanererin/Placebo</td>
<td>Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Improve Cataplexy, Mood/Quality of Life, Safety/ Adverse Events</td>
<td>Randomized double-blind placebo controlled trial of Ritanererin, a potent long-acting 5-HT2 receptor blocker, in 28 narcolepsy patients./ Randomized Control Trial/Double-Blind Testing</td>
<td>NS, presumably expert assigned./ Private Foundation/ Expert-Assigned or Selected Gps</td>
<td>28/28 ±16 received Ritanererin & 12 received placebo/ 43 (range 16-47)</td>
<td>NA</td>
<td>2.5 milligrams/Following a 1-week “baseline” period, Ritanererin was dosed twice a day for 4 weeks in addition to their usual medical regimen for narcolepsy</td>
<td>Ritanererin reduced subjective EDS and increase feeling of refreshed in morning. There was no effect on MSLT latency, some measures of memory and attention per CDR improved with Ritanererin compared to placebo; no change in cataplexy with armodafinil; no adverse effects on PSG parameters with armodafinil.</td>
<td>Ritanererin, as “add on” therapy for narcolepsy, reduces subjective EDS and increases the feeling of being refreshed in the morning. There was no effect on objective sleepiness (MSLT mean sleep latency), frequency of cataplexy or sleep attacks, or the mood rating scale. Ritanererin increased slow-wave sleep (stage 3-4), and reduced wake after sleep onset.</td>
</tr>
<tr>
<td>Author (yr); Oxford Grade; Patient Group.</td>
<td>Intervention/ Comparison Intervention</td>
<td>Outcomes Measures</td>
<td>Study Description/ Study type/Blinding/Method</td>
<td>Recruitment Source/ Funding Source/ Recruitment</td>
<td># patients enrolled/ completed/ Patients' Age + SD [range]/ %male</td>
<td># controls enrolled/ completed/ Controls’ Age + SD [range]/ %male</td>
<td>Dose/Dosing Strategy</td>
<td>Primary Study Outcomes</td>
<td>Conclusions</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>Larrosa, O. et al. (2001); 4; N with C.</td>
<td>Reboxetine</td>
<td>EDS (subj) and obj using ESS, VAS, MSLT/Caplexy subscale of Ullanlinna N Scale/ Mood (Beck Depression Inventory)/ Quality of Life, TST, safety/AE</td>
<td>Pre-post test study to determine if reboxetine was effective for reducing EDS and C compared to baseline/cohort study/no blinding</td>
<td>Clinic Population/ Pharmaceutical/ Expert-Assigned or Selected Grps</td>
<td>12 enrolled/ 12 complet-ed/36.6±11.7/50%</td>
<td>NA</td>
<td>10 mg per day/ 6 mg q ao, 4 mg at lunchtime</td>
<td>Roboxitine was effective in reducing all measures of subjective sleepiness including ESS, VAS sleepiness as well as objective EDS based on pre- and post MSLT data as well as C subscale of the Ullanlinna N Scale; Roboxitine increased % stage 1 and REM latency at night, with decreased % SOREM’s on MSLT; no change in BDI; performance still below healthy normal controls.</td>
<td>Preliminary results demonstrate improvement of subjective sleepiness and reduction in C; effect on MSLT less consistent in those with mean sleep latency < 6 mins.</td>
</tr>
<tr>
<td>Mamalek, M. et al. (2004); 4; N</td>
<td>Sodium oxybate</td>
<td>EDS (subj), EDS (obj), Safety/AEs, TST</td>
<td>The authors investigated the effects of escalating doses of sodium oxybate on sleep architecture and daytime functioning/cohort study/No Blinding</td>
<td>4 clinical trial sites/ Pharmaceutical</td>
<td>29/25/2.6 ± 8.8 years, [range NR]/ 28% male</td>
<td>NA</td>
<td>4.5 g/night, 6.0 g/night, 7.5 g/night, 9.0 g/night/ One-half of total dose taken twice nightly. Dose escalated every 2 weeks following a 4-week period of 4.5 g/night</td>
<td>Sodium oxybate produced dose-related increases in SWS and delta power, daytime SOL on MWT increased; and nocturnal awakenings decreased. The ESS score decreased and all scales of the narcolepsy symptom questionnaire improved.</td>
<td>Sodium oxybate produced dose-related improvements in narcolepsy symptoms.</td>
</tr>
<tr>
<td>Mayer (2003); 2; N</td>
<td>Ritanserin/ placebo</td>
<td>EDS (subj), EDS (obj), Safety/AEs, TST</td>
<td>The effect of ritanserin (a 5-HT2 antagonist) on daytime sleepiness and daytime functioning in narcoleptics was assessed RCT/Double-Blind Testing</td>
<td>NR</td>
<td>134 enrolled/ 122 completed/Placebo group: 40.9 ± 14.2, 5 mg group: 43.2 ± 12.5; 10 mg group: 43.2 ± 15.0: range: 16 - 65 years; 62.7% male</td>
<td>NA</td>
<td>Ritanserin 5mg or 10 mg or placebo was taken once daily after breakfast for 28 days; subjects were allowed to continue receiving their usual medication regimes</td>
<td>Subjective symptoms: 5 mg improved “refreshed” feeling in am., sleep attacks, daytime sleepiness, work & activities, social life and partners rated improvements in daytime sleepiness and work & activities. 10 mg improved sleep quality and sleep attacks.</td>
<td>Ritanserin had very little effect on improving narcolepsy symptoms. While ritanserin did improve some parameters of PSG-recorded sleep, corresponding subjective improvements were not found. Ritanserin should not be used as a primary stimulant or hypnotic.</td>
</tr>
<tr>
<td>Miller (2000); 4; N</td>
<td>Modafinil/NA</td>
<td>Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Safety/ Adverse Events</td>
<td>long-term (40 weeks) open label efficacy and safety study of modafinil/Cohort or Ecological Studies/No Blinding</td>
<td>Patients who had participated in one of two prior clinical studies/ Pharmaceutical/ Expert-Assigned or Selected Grps</td>
<td>478/341 (9.9% discontinued treatment due to AE; 11.5% discontinued treatment due to lack of efficacy)/42 +/- 13 (18-65)/46%</td>
<td>NA</td>
<td>200, 300, 400 mg; 1st group: 200, 300 or 400 mg daily at discretion of investigator; 2nd group: 200 mg/day for one week, then 400 mg/day for one week, then either 200 mg or 400 mg daily for duration of study at the discretion of the investigator/NR</td>
<td>CGI-Change: 80% of patients improved, 10% unchanged, 10% worsened; mean ESS: improved from 16.5 to 12.4; QoL scores improved in 6 of 8 SF-36 domains.</td>
<td>Modafinil (most patients received 400 mg) significantly reduced EDS and generally improved QoL in patients with N; the medication was generally well-tolerated and there was no indication of tolerance.</td>
</tr>
<tr>
<td>Author (yr);</td>
<td>Intervention/Comparison</td>
<td>Outcomes Measures</td>
<td>Study Description/Study type/Blinding/Method</td>
<td>Recruitment Source/Funding Source/Recruitment</td>
<td># patients enrolled/complete/Controls' Age + SD [range]/%male</td>
<td># controls enrolled/complete/Controls' Age + SD [range]/%male</td>
<td>Dose/Dosing Strategy</td>
<td>Primary Study Outcomes</td>
<td>Conclusions</td>
</tr>
<tr>
<td>-------------</td>
<td>-------------------------</td>
<td>-------------------</td>
<td>--</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--------------------------------</td>
<td>--------------------------</td>
<td>----------------------</td>
</tr>
<tr>
<td>Moldofsky (2000); 2; N.</td>
<td>Modafinil/placebo</td>
<td>Subjective Sleepiness</td>
<td>Daytime Sleepiness</td>
<td>Subjects who completed prior clinical trial with modafinil/Pharmacological/Expert-Assigned or Selected Gps</td>
<td>49/83 for open label portion; 30/28 for 2 week RCT portion; 4/5 16/33.3% for open label portion</td>
<td>33/3 for 2 week RCT/placebo for 2 week RCT portion</td>
<td>200-400 mg daily for most patients; 1 patient took 150 mg daily; 2 patients took 500 mg daily; 60 mg label portion; patients started with 200 mg in a.m. and 100 mg at noon; dose then adjusted up or down by 100 mg increments based on clinical assessment; patients randomized to modafinil arm during 2 week RCT portion continued their individualized dose from open label portion</td>
<td>At end of 2nd week RCT portion, MWT mean SL were 70% longer on modafinil than on placebo (p=0.009); in patients switched from modafinil to placebo MWT SL decreased by 37% (p=0.006), compared to decrease in 7% in group remaining on modafinil (p=0.35); 4.3% of MWT sessions ended without sleep on modafinil compared to 6.1% on placebo (p=0.001); few changes on PSG measures of sleep architecture; compared to placebo, modafinil reduced total number of reported episodes of severe somnolence plus sleep attacks plus naps (p=0.017); ESS scores lower on modafinil (13.2±5.7) compared to placebo (15.4±5.8) at end of study (p=0.023); no changes in POMS scores; Modafinil continued to be an effective and well tolerated drug after 16 weeks of treatment of EDS in patients with narcolepsy</td>
<td></td>
</tr>
<tr>
<td>Nieves, A. V. et al. (2002); 4; PD.</td>
<td>Modafinil/placebo</td>
<td>Unified PD Rating Scale</td>
<td>ESS and Unified PD Rating Scale part III</td>
<td>Movement Disorders Center/NR</td>
<td>10/9/7/72; 66.9±_ 7] 80%</td>
<td>NA</td>
<td>Titrated as needed from 100-400mg/day, not to exceed 400mg/day for 4 weeks/1 dose of 100mg “early in the morning,” and were allowed to increase the dose by 100 mg every week up to a maximum of 400 mg divided in two doses</td>
<td>Mean ESS score at baseline of patients completing the study (n=9) was 14.22 (± 3.03) and post-study (on an average dose of 172 mg/day), mean ESS score was 6.0 (± 4.87); Unified PD Rating Scale scores were NOT affected.</td>
<td>Modafinil is effective in reducing subjective EDS in patients with PD treated with dopaminergic drugs -- it did not seem to worsen parkinsonian symptoms and may allow further increase in dopaminergic therapy in patients previously unable to tolerate certain dosages.</td>
</tr>
<tr>
<td>Ondo, W. G. et al. (2005); 2; PD.</td>
<td>Modafinil/Placebo</td>
<td>EDS (sub), EDS (obj), Safety/Adls Mood/Quality of Life</td>
<td>a 4-week open-label trial of Modafinil in 10 patients with PD, who also had EDS and were on various dopaminergic drugs/Cohort Study/No Blinding</td>
<td>Clinic population at a tertiary referral center/Pharmaceutical</td>
<td>40/76; 22.5 ± 11.3/72.5%</td>
<td>NA</td>
<td>200 mg/day or 400 mg/day/half the dosage taken after waking and the other half at noon</td>
<td>Modafinil did not reduce EDS (sub) or EDS (obj).</td>
<td>Modafinil is not effective for reducing EDS experienced by patients with PD.</td>
</tr>
<tr>
<td>Poppe (2003); 4; Recurrent Hypersomnia.</td>
<td>Lithium carbonate/NS</td>
<td>Frequency and duration of hypersomnic episodes</td>
<td>Case series of 5 patients with Kleine-Levin Syndrome (KLS) treated with lithium prophylaxis/Case Studies/No Blinding</td>
<td>Children's Hospital, Technical University Dresden/NA/Expert-Assigned or Selected Gps</td>
<td>5/5/13 to 17 years old; 60% male</td>
<td>NA</td>
<td>Lithium retard tablet at a dose that maintained serum levels between 0.6-0.9 mmol/L. Between 20 and 36 months of therapy</td>
<td>Influence of lithium therapy on frequency and/or duration of KLS episodes.</td>
<td>The risk of episodes under treatment with lithium dropped from 100% to 93% per preceding month of therapy (Odds Ratio=0.89; 95% confidence interval 0.89-0.96; p=0.001). Quantitatively, lithium therapy reduces the mean duration of episodes by 19% (p=0.012).</td>
</tr>
</tbody>
</table>

SLEEP, Vol. 30, No. 12, 2007
Daytime Conclusions

Fatigue

200mg/day; 400mg/day/All

Rammohan (2002); 2, MS.

Modafinil/ Placebo

Fatigue Severity Scale, modified fatigue impact scale; ESS; a visual analogue scale for fatigue (VAS-F)

9-week, single blind, pilot study designed to assess efficacy and safety of modafinil for the treatment of fatigue in patients with (MS)/Cohort Study/Single Blinding

NS/Pharmaceutical

72/65/44 (23-61)/75%

NA

200mg/day; 400mg/day/All

All patients received placebo during weeks 1–2, 200mg/day modafinil during weeks 3–4, 400 mg/day modafinil during weeks 5–6, and placebo during weeks 7–9.

200 mg/day Dose: compared to placebo run-in, sig improvement in fatigue was demonstrated in mean scores post-treatment were: FSS, 4.7 vs 5.5 for placebo (p<0.001); MFIS, 37.7 vs 44.7 (p<0.001); and VAS-F, 5.4 vs 4.5 (p=0.003), 400mg/day Dose: Fatigue scores not significantly improved versus placebo run in. Mean ESS scores were significantly improved (p<0.001) with 200 mg/day modafinil (7.2) and 400 mg/day (7.0) vs the score at baseline (9.5).

200mg/day of modafinil improves fatigue in MS patients. Mean ESS scores were significantly improved with 200mg/day and 400mg/day in comparison with baseline scores.

Rogers, A. E. et al. (2001); 2, N.

Naps, regular schedule, combo naps/regular bedtime/ Other Treatment and Schedules

Narcolepsy Symptom Status Questionnaire (NSSQ); 24 hr ambulatory PSG monitoring

To determine if the combination of scheduled sleep periods and stimulant medications was more effective than stimulant therapy alone/RCT/No Blinding

Clinic population/ Oxford Medilog Inc

29/29/43.7 ±13.9 [18-64], 41.4%

NA

NA

Only the combination of naps and scheduled bedtimes reduced the amount of unscheduled daytime sleep compared to stimulant therapy alone (baseline).

Although the scheduled naps are often recommended, they were not more effective than stimulant medications alone. Only the combination of scheduled naps and regular bedtimes was more effective in reducing unscheduled daytime sleep episodes than stimulant therapy alone.

Saleu, M. et al. (2004); 2, N.

Modafinil/ Placebo

EDS (sub), EDS (obj)

This study examined narcoleptics and normal controls in a crossover study of a three-week fixed titration of modafinil (200, 300, 400 mg) and placebo to identify brain regions associated with vigilance in untreated and modafinil-treated narcoleptic patients by means of low resolution brain electromagnetic tomography (LORETA)/RCT/ Double-Blind Testing

NS/Pharmaceutical

16/15/[39.1±13.3], 62.5%

16/16/[37.1±13.5]/ 62.5%

200, 300, 400 mg modafinil (3 week fixed titration schedule)

The EEG differences between groups were characterized by significant decrease in alpha-2 power, mainly in the frontal, temporal and parietal areas of the right hemisphere, along with a global decrease in beta power, also accentuated over the right cortical brain areas. ESS score decreased from median 14.5 after 3 weeks of placebo to 12.5 after 3 weeks of modafinil. In the MSLT latency to sleep stage S1 significantly increased from a median of 3.2 min after three weeks of placebo to 6.6 min after three weeks of modafinil (p<0.05).

Modafinil is associated with improvement in subjective and objective daytime sleepiness. LORETA provided evidence of a functional deterioration of the fronto-temporo-parietal network of the right-hemispheric vigilance system in narcolepsy and a therapeutic effect of modafinil on the left hemisphere, which is less affected by the disease.

Schwartz (2003); 1, N.

Modafinil/placebo

Daytime Sleepiness (Subjective), Daytime Sleepiness (Objective), Safety/ Adverse Events

Double-blind, randomized, multicenter study of 3 Modafinil dosing regimens in patients with a prior positive response to the medication who were dissatisfied with late-afternoon or evening sleepiness. Randomized Controlled Trial/Double-Blind Testing

NR/Pharmaceutical/ Expert-Assigned or Selected Gps

32/32/43 +/- 12 [26-61]/27 for 200 mg QD group; 47 +/- 16 [28-71]/64 for 400 mg QD group; 39 +/- 15 [19-60]/50 for 400 mg split dose group

NR/NR/Crossover study design; one week of modafinil washout followed by randomization to one of 3 dosing regimens for a 3 week period

200 mg QD; 400 mg QD; 200 mg BED/All groups took 200 mg at 0700 hrs + placebo at noon for 1 week; group A continued this regimen for 2 more weeks; group B took 400 mg at 0700 and placebo at noon for 2 more weeks; group C took 200 mg at 0700 and 200 mg at noon for 2 more weeks

CGI-change improved in all groups compared to baseline; ESS scores improved in all groups (trend toward more improvement in 400 mg QD compared to 200 mg QD, but not statistically significant); mean MWT sleep latency improved in all groups (more improvement in both 400 mg groups than in 200 mg group); improvement in evening sleepiness was greater in the split-dose group.

A split-dose 400 mg regimen is superior to once daily dosing for sustaining wakefulness throughout the entire waking day.
<table>
<thead>
<tr>
<th>Author(s) (yr); Oxford Grade; Patient Group.</th>
<th>Intervention/Comparison Intervention</th>
<th>Outcomes Measures</th>
<th>Study Description/Study Type/Blinding/Method</th>
<th>Recruitment Source/Funding Source/Recruitment</th>
<th># patients enrolled/completed: Patients’ Age + SD [range]/% male</th>
<th># controls enrolled/completed: Controls’ Age + SD [range]/% male</th>
<th>Dose/Dosing Strategy</th>
<th>Primary Study Outcomes</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Schwartz, J. R. (2003); 1; N.</td>
<td>Modafinil</td>
<td>EDS (subj), EDS (obj)</td>
<td>This double-blind study assessed if an additional afternoon dose of modafinil (600 mg total daily dose) would be more effective than a single morning dose (400 mg) for reducing afternoon and evening sleepiness/No Blinding</td>
<td>Expert assigned or selected groups from a clinic population/pharmaceutical industry</td>
<td>24/24/400 mg treatment group (40; 18-61), 600 mg treatment group (45; 14-60)/58%</td>
<td>NA</td>
<td>400 mg modafinil and 600 mg modafinil/400 mg q am (0700); and split-dose (400 mg q am, 200 mg q pm)</td>
<td>A significantly higher percentage of patients receiving the higher split dose of modafinil were able to remain awake during the late afternoon and evening than patients on single dosage (either 200 or 400 mg q am). Executive functioning was also improved.</td>
<td></td>
</tr>
<tr>
<td>Schwartz, J. R. et al. (2003); 4; N.</td>
<td>Modafinil</td>
<td>EDS (subj) and obj, AE, and Executive Functioning using ESS, CGI, MWT, and WCST</td>
<td>This study was designed to determine if a split dose of modafinil would be more effective than a single morning dose for reducing sleepiness in the late afternoon and evening/Randomized Controlled Trial/Double-Blind Testing</td>
<td>Expert assigned or selected groups from a clinic population/pharmaceutical industry</td>
<td>20/19/43 (18-65)/68%</td>
<td>NA</td>
<td>200 mg or 400 mg; There was a 2 week washout period from all stimulant medications.</td>
<td>Compared to a post-washout baseline, all doses of modafinil improved the ESS score and CGI-C scores. 70% of the patients were taking 400 mg modafinil daily at the end of the study.</td>
<td></td>
</tr>
<tr>
<td>Schwartz, J. R. et al. (2004); 1; N.</td>
<td>Modafinil (400 mg q am and 200 mg q pm vs. 400 mg q am)/placebo</td>
<td>EDS (subj) and obj, AE, and Executive Functioning using ESS, SF36, PSG, MWT</td>
<td>This double-blind crossover study of modafinil versus placebo for the treatment of EDS in patients with Myotonic Dystrophy/randomized control trial/Double-Blind Testing</td>
<td>Expert assigned or selected groups from a clinic population/pharmaceutical industry</td>
<td>20/19/43 (18-65)/68%</td>
<td>Within subject design</td>
<td>100 mg, 200 mg/100 mg on days 1-5, followed by 200 mg on days 6-28</td>
<td>Non-significant reduction in ESS. SL on MWT was prolonged by treatment (31.7-40 min, p=.006).</td>
<td></td>
</tr>
<tr>
<td>Talbot (2003); 1; Myotonic Dystrophy.</td>
<td>Modafinil/placebo</td>
<td>A randomized double-blind crossover study of modafinil versus placebo for the treatment of EDS in patients with Myotonic Dystrophy/randomized control trial/Double-Blind Testing</td>
<td>Expert assigned or selected groups from a clinic population/pharmaceutical industry</td>
<td>20/19/43 (18-65)/68%</td>
<td>Within subject design</td>
<td>100 mg, 200 mg/100 mg on days 1-5, followed by 200 mg on days 6-28</td>
<td>Non-significant reduction in ESS. SL on MWT was prolonged by treatment (31.7-40 min, p=.006).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>U.S. Synerm Multicenter Study Group (2004); 1; N C.</td>
<td>Sodium oxybate/placebo</td>
<td>C improvement, AE using diaries</td>
<td>This double blind treatment withdrawal study examining the long-term efficacy of sodium oxybate on cataplexy/randomized control trial/Double-Blind Testing</td>
<td>Expert assigned or selected groups/pharmaceutical industry</td>
<td>56/55/26 (47.7)/42%</td>
<td>NA</td>
<td>Sodium oxybate ranging from 3.0 to 9.0 g nightly/ Sodium oxybate or placebo was administered in equally divided doses immediately upon going to bed and again 2.5-4 h later</td>
<td>During the 2-week double-blind phase, the abrupt cessation of sodium oxybate therapy in the placebo patients resulted in a significant increase in the number of cataplexy attacks (median change = 21); P<0.001 compared to patients who remained on sodium oxybate.</td>
<td></td>
</tr>
</tbody>
</table>

This randomized controlled trial provides evidence supporting the long-term efficacy of sodium oxybate for the treatment of cataplexy. There appeared to be no evidence of rebound cataplexy upon abrupt discontinuation of treatment, nor any symptoms of frank withdrawal.
<table>
<thead>
<tr>
<th>Author (yr); Oxford Grade; Patient Group.</th>
<th>Intervention/Comparison Intervention</th>
<th>Outcomes Measures</th>
<th>Study Description/Study type/Blinding/Method</th>
<th>Recruitment Source/ Funding Source/Recruitment</th>
<th># patients enrolled/completed/controls Age + SD [range]/%male</th>
<th># controls enrolled/completed/controls Age + SD [range]/%male</th>
<th>Dose/Dosing Strategy</th>
<th>Primary Study Outcomes</th>
<th>Conclusions</th>
</tr>
</thead>
<tbody>
<tr>
<td>U.S. Xyrem® Multicenter Study Group (2003); 4, N.C.</td>
<td>Sodium oxybate/14-21 day baseline period</td>
<td>EDS (sub), C improvement, AE using CGI, ESS, logs</td>
<td>This study evaluated the safety and efficacy of five different doses (3.9 g) of sodium oxybate during a multicenter 12-month open-label trial/cohorts study/No Blinding</td>
<td>Expert assigned or selected groups from clinical populations > 18 yo/pharmaceutical industry</td>
<td>118/18/43.7 [18-70]/43.5%</td>
<td>NA</td>
<td>3 mg, 4.5 mg, 6 mg, 7.5 mg, or 9 mg of sodium oxybate nightly/initial dose at bedtime and second dose 2.5-4 hours later</td>
<td>Cataplexy episodes decreased significantly the first month (compared to baseline numbers) in all treatment groups, and continued to remain at a lower level throughout the 12 month trial period. ESS decreased at 1-month for all tx groups except 4.5 g (p=0.4).</td>
<td>3 to 9 g of sodium oxybate produced significant and long-term reductions in cataplexy and subjective daytime sleepiness.</td>
</tr>
<tr>
<td>US Xyrem Multicenter Study Group (2002); 1, N.</td>
<td>Sodium oxybate/placebo</td>
<td>EDS (sub) and/or Cataplexy and AE using CGI, ESS, and logs/number of nocturnal awakenings/HH and SP</td>
<td>This multi-site double-blind trial investigated the effects of 3 doses of sodium oxybate on the treatment of narcolepsy symptoms/randomized control trial/Double-Blind Testing</td>
<td>Random selection from sleep disorders centers in the United States/pharmaceutical industry</td>
<td>136/120/43.1/41.9% male</td>
<td>NA</td>
<td>3 g, 6 g, 9 g/half at bedtime, the other half 2.5-4 hrs later; dose was started after an extended washout period of other cataplexy medications (as long as 6 weeks)</td>
<td>The 9 g dose reduced the # of cataplexy attacks compared to placebo. CGI exhibited change from baseline at 9 g dose. Inadvertent naps/sleep attacks reduced at both 6 g and 9 g doses. 9 g dose decreased nocturnal awakenings.</td>
<td>Sodium oxybate is an effective and safe treatment for EDS associated with narcolepsy, particularly at the 9 g dose.</td>
</tr>
<tr>
<td>Van der Meche (1994); Methylphenidate/NA</td>
<td>Methylphenidate/NA</td>
<td>EDS (sub) using a “standard questionnaire”</td>
<td>This unblinded study evaluated if EDS in MD is caused by OSA, and if not whether or not methylphenidate would reduce the hypersomnia/case series/No Blinding</td>
<td>Expert assigned or selected groups/Netherlands</td>
<td>22/median age for males 36, females 50 [16-67]/63.6% male</td>
<td>NA</td>
<td>10 mg/10 mg daily increased to 10-20 mg BID</td>
<td>Methylphenidate produced increased daytime alerterness in 7 of 11 patients/3 of the 17 patients tested had OSA.</td>
<td>Methylphenidate is effective in reducing hypersomnia associated with Myotonic Dystrophy.</td>
</tr>
<tr>
<td>Weaver (2006); 1, N. C.</td>
<td>Sodium Oxybate/Placebo</td>
<td>Mood/Quality of Life</td>
<td>Randomized, double blind, placebo-controlled parallel-group clinical trial of 285 patients with narcolepsy treated with sodium oxybate (4.5 to 9 g/day in divided doses) for 4 weeks following withdrawl of their baseline anti-cataplexy medications. The effect on quality of life was assessed with Functional Outcomes of Sleep Questionnaire (FOSQ)/Randomized Control Trial/Double-Blind Testing</td>
<td>Outpatient facility of 42 sleep centers in the United States, Canada, and Europe/Pharmaceutical/Expert-Assigned on Selected Grps</td>
<td>217 randomized/181 intent to treat/4.5 g/day 41.8% [6.7-72.8]; 6 g/day 39.2% [15.6-79.7]; 9 g/day 39.9% [12.5-534.6]</td>
<td>68 randomized/47 intent to treat/Placebo 40.8% [15.5-28.8]</td>
<td>4.5, 6 or 9 g/day in divided doses. First dose QHS, second dose 2.5 to 4 hours later. The first 14 days was a lead-in period, followed by a 21 day withdraw from antacataplectic therapy, then a 5 to 18 day washout period. Participants randomized to sodium oxybate all received 7 days of the 4.5 g dose, followed by titration to their final dose according to the randomization scheme. Participants on active treatment were on study medication for at least 7 days before proceeding to the next dose</td>
<td>When compared to placebo, the 9 g/day group demonstrated improvement in all components of the FOSQ except the intimacy and sexual relationships scale. The 6 g/day dose demonstrated improvement in 2 of 5 subscales. A dose effect was evident for the total score and all FOSQ subscales except the intimacy and sexual relationships scale. There was no significant change at the 4.5 g/day dose.</td>
<td>Compared with placebo-treated patients, participants treated with doses of sodium oxybate of 6 g/day and 9 g/day experienced significant improvements in functional status as measured by the FOSQ.</td>
</tr>
<tr>
<td>Author (yr); Oxford Grade; Patient Group.</td>
<td>Intervention/Comparison Intervention</td>
<td>Outcomes Measures</td>
<td>Study Description/Study type/Blinding Method</td>
<td>Recruitment Source/ Funding Source/Recruitment</td>
<td># patients enrolled/completed/ Patients' Age + SD [range]/% male</td>
<td># controls enrolled/Controls' Age + SD [range]/% male</td>
<td>Dose/Dosing Strategy</td>
<td>Primary Study Outcomes</td>
<td>Conclusions</td>
</tr>
<tr>
<td>--</td>
<td>-------------------------------------</td>
<td>------------------</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Zifko (2002); 4; MS.</td>
<td>Modafinil/NA</td>
<td>EDS (subj), QOL, AE using ESS, Fatigue Severity Scale, clinical outcome rating, and patient self-appraisal in fatigue</td>
<td>This unblinded study assessed the tolerability, optimal dose, and efficacy of modafinil in patients with multiple sclerosis and fatigue and EDS/cohort study/No Blinding</td>
<td>Expert assigned or selected groups from 2 centers specializing in MS/ government sources, pharmaceutical industry</td>
<td>50/47-40.4 +/- 10.3/40% male</td>
<td>NA</td>
<td>50 - 300 mg daily/started at 100 mg daily and increased to 200 mg or 300 mg daily as needed. Maximum doses were achieved in 4 weeks or less</td>
<td>Both the Fatigue Severity Scale and ESS decreased significantly during the 3 months of study. Both the patients' self-reported fatigue and the clinicians' impression of fatigue improved.</td>
<td>Fatigue and sleepiness were significantly improved by modafinil in patients with MS. The drug was generally well-tolerated.</td>
</tr>
</tbody>
</table>

Abbreviations

N = Narcolepsy
C = Cataplexy
IH = Idiopathic Hypersomnia
PD = Parkinson disease
MS = Multiple sclerosis